COMPOSITE MATERIALS RESEARCH
@UGENT-MMS

Prof. dr. ir. Wim Van Paepegem
http://www.composites.ugent.be/
PERSONNEL

3 Professors (ZAP)
1 Doctor-assistant (AAP)
29 (+ 5) Researchers (internal)
4 Researchers (external)
2 Technicians
15-20 Master thesis students
PERSONNEL

Evolution of the number of postdoctoral researchers, internal and external PhD students and master thesis students in the research group UGent-MMS (2002-2019)

Number [-]

Year [-]

- Postdocs
- Internal PhD students
- External PhD students
- Master thesis students

http://www.composites.ugent.be/
INDUSTRIAL COLLABORATIONS

Automotive
- Siemens
- Honda R&D
- Bosch R&D
- Toyota
- Fiat
- Bentley
- Recticel

Aerospace
- Sabca
- Ten Cate/Toray
- Safran Aero Boosters
- Rolls Royce
- Airborne
- Qinetiq Space
- Airbus CFK Valley

Wind / wave / tidal
- LM Windpower
- Siemens/Gamesa
- Engie
- Suzlon SE Blades
- DEME
- Damen
- Xant

Materials
- Eastman Chemicals
- Mitsubishi Rayon
- Arkema
- BASF
- AGC
- Covestro (Bayer Material Science)
- Domo
- Solvay
- 3D Weaving
- Dutch Polymer Institute (DPI) / SABIC, DSM, Shell, Teijin, SKF, Nouryon

Industry/construction
- Bekaert
- Atlas Copco
- Parker
- Sioen
- FiberCore
- Spiromatic
- OCAS
- Samsonite

Sports
- Eddy Merckx Cycles/ Ridley
- Lazer Sport
- Koga

Simulation software
- Simulia / Dassault
- Siemens
- e-XStream / MSC.Software
- 4RealSim

3D printing
- Materialise
- Siemens
- 3D Systems (Layerwise)
- Vigo
- Asco
- Vibrant
- BMT Aerospace
- Engie
- Oceanz, EXO-L, 3D LifePrints (3DMED)
VALORIZATION

Valorization consortium “Composites” at Ghent University

- Coordination by our group UGent-MMS
- Full-time business developer
- Liaison officer for all valorization activities/technology transfer to industry

Four spin-off companies
- Com&Sens - Composites & Sensing (http://www.com-sens.eu/)
- MadSis - MAterials, Design, Simulations, Software (http://www.madsis.eu/)
- BikeLabs International – Bicycle testing & consultancy (http://www.bikelabsinternational.com/)
- TechSpert – Mechanical testing

Recognized service department by Vlaio for “KMO-cheques”
125 *Science Citation Index (SCI)* publications over last 7 years (average output of 18 publications/year)

1/3 is top 10% publications in SCI peer-reviewed journals

PUBLICATION OUTPUT

Distribution of all 125 Science Citation Index publications

- **1st quartile**: 92 publications
- **2nd quartile**: 25 publications
- **3rd quartile**: 6 publications
- **4th quartile**: 2 publications

Dedication to quality !!!
ADVANCED CALCULATION ENVIRONMENT

- CAE/CAD: SolidWorks, Catia, FreeCAD
- Finite elements: Abaqus, LS-Dyna, Siemens SimCenter/NX, Samcef, Code_Aster, Morfeo/Crack
- Composite draping modules: Catia/CPD, Simulayt/Composite Modeler
- Digimat (e-XStream/MSC) software for short-fibre composites
- Mimics Innovation Suite (Materialise): CT image segmentation and 3D printing design
- Optimization software: iSight, Tosca, Samcef/TOPOL, evolutionary strategies
- UM software for kinematics and multibody dynamics
- Access to HPC cluster for finite element calculations (12000+ cores, 3.2 Terabyte RAM)
- Advanced professional user of the finite element code Abaqus (Simulia)
- Strategic collaboration agreement with Siemens Industry Software
- In-house developed software
 - large collection of user material models (visco-elasto-plasticity, (fatigue) damage, strain-rate, hyperelasticity, Ladeveze,…)
 - software suite (Matlab) for prediction of matrix cracking and free-edge interlaminar stresses in UD composites
 - SERVE: Statistically Equivalent Representative Volume Element (RVE)
 - ORAS: Object-Oriented RVE Assembly Software
 - Blade Mesher: meshing tools for large wind turbine blades
 - DEM (Discrete Element Method) solver for million+ particles

http://www.composites.ugent.be/
RESEARCH AREAS

Key areas for composites:

- **Impact** (bird strike, drop weight tower, crushing, low velocity impact,...)
- **Fatigue** (tension/compression, bending, shear, delamination,...)
- **NDT/NDE** (ultrasound, thermography, vibrometry, guided waves,...)
- **General mechanics** of composite materials

Mission statement:

“To study the mechanical behaviour of composite materials by a combined approach of instrumented experimental testing and adequate numerical modelling, in close collaboration with the composites industry and its suppliers”
MECHANICAL TESTING

- **Static testing**
 - Sample preparation (specimen design, cutting, end tabs, fixture design,…)
 - Measurement of (orthotropic) stiffness, strength and failure strain
 - Temperature chambers (-150 °C to +250 °C)
 - Loading in tension, compression, shear, bending
 - Calibration of all load cells, actuators and machine alignment

- **Dynamic Mechanical Analysis (DMA)**
 - Visco-elastic properties
 - Time- and temperature-dependent stiffness

- **Fracture Mechanics testing**
 - fracture properties of bulk polymer (SENB)
 - mode I testing (DCB)
 - mode II testing (ENF, ELS)
 - Central Cut Ply (CCP) specimens
 - mixed mode testing (MMB, SLS)
 - fracture properties of adhesives/coatings

- **Micromechanical testing**
 - Scanning Electron Microscope (SEM) with in-situ tensile stage
 - In-situ strength properties of polymer micro-fibres
 - Fibre-matrix interface test
DYNAMIC MECHANICAL TESTING

- **Impact testing**
 - drop weight impact
 - Compression After Impact (CAI)
 - high strain-rate testing
 - crushing and energy absorption
 - dynamic delamination testing
 - High speed camera’s (up till 500,000 frames per second)

- **Fatigue testing**
 - tension/compression, bending, shear
 - multiaxial fatigue (tension/torsion)
 - fatigue of delaminations and joints

- **Vibration/NVH testing**
 - damping measurements
 - modal analysis

- **Structural testing**
 - bird strike testing
 - impact testing of large composite components
 - testing of racing bicycle frames
 - outdoor testing (wave impact, blast testing, sailing yachts, …)
CHARACTERIZATION AND MONITORING

- **Digital Image Correlation (DIC)**
 - full-field strain measurement
 - high-speed DIC (500 000 fps)
 - high-resolution DIC (~mm field of view)
 - real-time DIC in fatigue
 - sub-micron DIC

- **Optical fibre sensors**
 - surface mounted and embedded in composites
 - down to 60 μm diameter

- **Optical grating methods**

- **Online video-microscopy**
 - monitoring of crack growth
 - evolution of fatigue damage

- **Micro-tomography (micro-CT)**
 - in-situ loading of dry fabrics and composites
 - Digital Volume Correlation
 - Contrast agents for micro-CT
 - CT imaging > geometry reconstruction > FEM mesh

- **Optical microscopy**
 - stitched high-resolution microscopy
 - magnification up till 2000x

- **Scanning Electron Microscopy (SEM)**
NONDESTRUCTIVE TESTING (NDT)

• Ultrasound scanning
 • measurement of full orthotropic stiffness tensor
 • measurement of delaminations
 • thickness measurement of coatings
 • high-frequency ultrasound (75 MHz) and air-coupled ultrasound

• Active thermography for defect detection
 • lockin thermography
 • vibrothermography
 • Thermoelastic Stress Analysis (TSA)
 • numerical simulation of thermographic inspection

• Laser scanning vibrometry for defects
 • 3D scanning Laser Doppler Vibrometer
 • Local Defect Resonance (LDR)
 • modal analysis of composite components

• Capacitive sensors for cure monitoring
 • cure sensors on chip can be embedded in composite
 • sensor network with stretchable wires

• Mechanoluminescent powder
 • light emittance under mechanical stress
 • long-term solution for NDT

Winner of European “NDT in Aerospace” challenge (Paris, 2019)
NUMERICAL MODELLING

- **Micro-scale modelling**
 - unit cell with periodic boundary conditions
 - coupled visco-elasto-plasticity-damage-failure
 - fibre/matrix interface debonding
- **Meso-scale modelling**
 - unit cell of textile composites
 - static damage development
 - fatigue initiation and propagation
 - Reduced Order Modelling for RVE simulations
- **Fracture mechanics**
 - stress intensity factors
 - (dynamic) delamination modelling
- **Macro-scale (ply-based modelling)**
 - orthotropic visco-elasto-plasticity-damage-failure
 - fatigue initiation and propagation
 - low-velocity impact and Compression After Impact (CAI)
 - strain-rate dependent stiffness, strength and toughness
 - dynamic crushing
- **Structural scale modelling**
 - bird strike modelling
 - wind turbine blade modelling
 - topology and shape optimization
 - miscellaneous (tent structures, bicycle frames, …)
SPECIALIZED NUMERICAL METHODS

• Variational methods for Uni-Directional composites
 • prediction of matrix cracking and delamination in UD composites
 • arbitrary lay-up, multi-axial in-plane and bending loading
 • exact calculation of free-edge interlaminar stresses
 • very fast semi-analytical method (~ seconds)

• Mean-field homogenization (MFH) methods for short fibre composites
 • temperature-coupled visco-elasto-plasticity of short fibre thermoplastics
 • thermomechanical creep of short fibre composites
 • progressive fibre/matrix debonding in short fibre composites

• eXtended Finite Element Method (XFEM)
 • crack growth in concrete, polymers and (3D printed) metal
 • crack growth in self-healing materials

• Fluid-structure-interaction (FSI)
 • aero-elasticity of wind turbine blades (BEM + FEM)
 • drop tests of beverage cans (CEL)
 • air cavities in tyres and footballs (acoustic meshes)
 • slamming wave impact on offshore structures (SPH)
 • survivability of wave energy converters (SPH)
 • ditching of aircraft (SPH)
COMPOSITE PROCESSING

- **Dry fabric mechanics**
 - Prediction of textile geometry after weaving (as-woven properties)
 - Through-thickness compaction of dry fabric stacks
 - Shear properties of dry fabrics
 - Draping of dry fabrics

- **Injection moulding of short fibre composites**
 - Coupled simulation of injection moulding (Moldex3D), local material properties (Digimat) and thermomechanical simulation (Abaqus)

- **Consolidation of thermoplastic tapes and prepregs**
 - Hydraulic press (till 420 °C) with vacuum and embedded thermocouples
 - Mould design and optimization
 - Consolidation of unidirectional glass/PP tapes
 - Consolidation of unidirectional carbon/PEEK prepreg’s

- **Vitrimers for composite recycling**
 - New polymer chemistry for recycling of composites
 - Processing of glass/vitrimer composites
BESIDES COMPOSITE MATERIALS…
POLYMERS, FOAMS, ADHESIVES, GLASS,…

- **Thermoset and thermoplastic polymers**
 - Dynamic fracture models for brittle and ductile polymers, including rate-dependence and crack branching
 - Combined visco-plastic/damage/fracture material models for polymeric materials

- **Foams**
 - Simulation of impact and energy absorption behaviour of EPS foams for bicycle helmets
 - Use of foams and other novel materials in string music instruments

- **Joints / coatings**
 - Testing and simulation of adhesive joints
 - Pull-off dolly tests for strength of adhesive interfaces and coatings
 - New on-site joining technologies for PTFE sealant rings

- **Laminated glass**
 - Directional brittle smeared cracking models for glass
 - Strain-rate dependent hyperelastic models for soft polymer interlayers in laminated glass
ADDITIVE MANUFACTURING

- **Additive Manufacturing Process simulation**
 - Discrete Element Method (DEM) simulations for powder deposition in powder-based printing processes (SLM, SLS)
 - Computational Fluid Dynamics (CFD) simulations for Fused Deposition Modelling (FDM) processes of thermoplastic polymers

- **Quality control**
 - Micro-tomography (micro-CT) imaging of voids
 - Scanning Electron Microscopy (SEM) inspection of surface roughness, voids and failure initiation

- **High-frequency resonant testing for NDT of 3D printed parts**
 - Complex AM geometry -> conventional NDT methods do not work
 - Shift in high-frequency resonance peaks due to defects

- **Mechanical characterization**
 - Stiffness and strength of PA12, PP, Titanium, Stainless steel...
 - Topology optimization

- **Fatigue testing and simulation**
 - Fatigue properties of PA12, Titanium, Stainless steel, ...
 - Fatigue crack growth tests (Compact Tension tests)
 - Simulation of effect of voids and surface roughness on fatigue of AM metals (Titanium, Stainless steel, Inconel alloys)

- **Medical applications**
 - Fatigue of Ankle Foot Orthosis (AFO)
 - Titanium implants for Temporo-Mandibular joint, trauma plates, ...
 - Scoliosis braces
Wim VAN PAEPEGEM
Professor mechanics of composites

DEPARTMENT OF MATERIALS,
TEXTILES AND CHEMICAL ENGINEERING
E Wim.VanPaepegem@ugent.be
T +32 9 331 04 32
F +32 9 264 58 33

www.composites.ugent.be